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Nonlinear Kelvin and continental-shelf waves 
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Equations are derived for the variation along a straight coastline of Kelvin and 
continental-shelf waves. It is assumed that the effects of nonlinearity and dis- 
persion are of the same order in a small parameter E defined by the equation 
e2 = f2L2/gH,  in which f is the Coriolis parameter, L the shelf width and H the 
water depth beyond the shelf. Kelvin waves are found to satisfy the Korteweg-de 
Vries equation, while continental-shelf waves satisfy a closely related equation. 
An approximate rule is derived for the variation along a real coastline of the 
maximum wave height for fully developed nonlinear Kelvin waves. 

1. Introduction 
In  the original problems studied by Thomson (1879) and Robinson (1964), 

both the Kelvin and continental-shelf waves are non-dispersive. This means that 
the almost inevitable consequence of nonlinearity is shock waves and that a 
linear theory is of very restricted used. The more recent results of Buchwald & 
Adams (1968) and Larsen (1969) indicate that for some simple depth profiles 
there is dispersion for long waves of both classes. However, this topographic 
dispersion is so slight that nonlinearity could still be important. Thus it is natural 
to determine whether the dispersion is small for all depth profiles, and, if so, 
whether some form of nonlinear theory can be developed. 

In  § Q  2. I and 3.1 it  is shown that the topographic dispersion is indeed slight for 
all depth profiles. The shallow-water approximation, which is used here and in the 
four papers mentioned above, suppresses the dispersion assoeiated with the varia- 
tion of wave modes with depth. However, it  can be shown that in general the ratio of 
the two types of dispersion is of the order LIH,  where L and H are, respectively, 
the shelf width and the water depth beyond the continental shelf. Thus, for real 
coastlines the topographic dispersion is the more important, and it is justifiable to 
study this type of dispersion while using the shallow-water approximation. 

When studying nonlinear dispersive waves, it is conventional to exploit their 
large wavelength when defining natural length and amplitude scales (Ursell 
1953; Benjamin 1967). Here, as exemplified by the analysis of the linear equations 
in $9 2.1 and 3.1, there is already a natural large length scale Lle, where E is a small 
parameter defined by the equation c2 = f2L2/gH,  in which f is the Coriolis para- 
meter. Thus we are obliged to assume that the waves we are examining have 
length scales of this order. Likewise, if the effects of nonlinearity and dispersion 
are to be comparable then there are the imposed amplitude scales e2H and s3H for 
Kelvin and continental-shelf waves respectively. 
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The imposed amplitude scales are sufficiently large that a priori it would 
appear that nonlinearity may only be important for coastlines with narrow 
continental shelves. For such a shelf (of width 50 km and final depth 1 km) in 
mid-latitudes, the imposed amplitude scales are 2.5 metres and 0.125 metres for 
the two classes of waves. For those Kelvin waves associated with tides and floods 
a wave-height scale of 2.5 metres is very reasonable. Similarly, since the observed 
continental-shelf waves have been attributed to weather systems, a wave-height 
scale corresponding to a pressure of 12.5 millibars is acceptable (Hamon 1966). 

Kelvin and continental-shelf waves have the peculiar property that they can 
only propagate in one direction along a coastline. Thus it is not surprising that, 
after all the asymptotic expansions of the following sections, it is deduced that 
for each class of waves the variation of wave height along the shoreline is governed 
by equations closely related to the equation of Korteweg & de Vries (1895), which 
was derived for slightly nonlinear water waves under an approximation of one- 
way propagation. The nonlinear term in the Korteweg-de Vries equation makes 
it possible for an initially small amplitude disturbance to steepen. Thus non- 
linearity could be important for waves whose initial amplitudes are very small 
compared with the imposed wave-height scale, and consequently the nonlinear 
theory will have greater applicability than the initial estimates of the previous 
paragraph would suggest. 

A simple rule which, because of the association between Kelvin waves and 
floods, may be of practical use is that for fully developed nonlinear Kelvin 
waves the maximum wave height on a coastline is proportional to the local 
value of 

f+[ /"(H-h)dz]-+,  0 

where X measures distance outwards from the coast and is the water depth at S. 
For a real coastline the interpretation of infinite distance and H are necessarily 
vague, but this should not be significant. The theoretical standing of this rule is 
very slight since, as explained in $2.4, there cannot be any universal rule. 

2. Kelvin waves 
2.1. Linear Kelvin waves 

In  non-dimensional form, linear Kelvin waves of velocity C, amplitude 7 and 
wavenumber E ,  propagating along a coastline of the form shown in figure 1 
satisfy the shallow-water wave equations 

= 0, 

(2.1) i = O  at x = O ,  

7 = 0 at x = b-. 1 
The corresponding dimensional quantities are 

2 = Hh,  X: = Lx ,  2 = slclL, = -C(gH)tsgnf. 
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FIGURE 1. Typical depth topography. 

The boundary condition at x = b- is a consequence of the requirements that the 
wave height and mass transport be continuous with the exponentially decaying 
solution which applies beyond x = b. Since (2.1) is a linear problem we can 
normalize the solution in any convenient manner; here we choose y (b ,  e)  = 1. 

In  the limit as &+ 0 we have a class of waves which is insensitive to the local 
depth variations. If these waves are to be regarded as long Kelvin waves then it is 
desirable that we should recover the classical Kelvin wave velocity C = 1. It is 
shown below that such a result is obtained by regarding k as fixed and formally 
letting e+ 0. However, the alternative limit procedure of regarding e as fixed and 
letting k+O gives different results. For this reason, and the more pragmatic 
reason given in 3 2.3, L/e seems to be a natural length scale for long Kelvin waves. 

For small e, we deduce that y and C have expansions of the form 

7 = y o + q l +  ...) c = C,+€C,+ ..., 
where the nj and Ci are all independent of e. The coefficients of €0 in (2.1) yield the 
simple problem ' 

& ( h $ ) = O ,  

hdy,/dx = 0 at x = 0, 

hdy,/dx = 0 at x = b-, 

which has the solution yo = 1. 
The coefficients of e in (2.1) yield the problem 

&(h$) =-c,-&' 1 dh 

hdy,/dx = - h/C, at x = 0, 

hdy,/dx = [( l/Co) (1 - h)  - {1 + k2( 1 - Cg)}*] at x = b-. 

These equations can only have a solution if the inhomogeneous terms are ortho- 
gonal t o  the zero-order solution 7, (i.e. if we integrate the differential equation 
from 0 to b and use the boundary conditions we find a relationship between the 
inhomogeneous terms). This constraint reduces to 

co{l+k~(i-c;)}~ = 1, 
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which has two roots: c, = 1, cop = 1 .  

We take the first root as the second corresponds t o  a wave of inertial frequency. 
The solution to the first-order equations is then 

71 = b-x. 

From the next two orders in e,  the orthogonality constraint yields the results 

P h  

c, = - (1-h)dx  = -a (say) 
J O  

and 

where, as above, the possibility of a wave of inertial frequency has been rejected. 
Since C, is independent of E the first-order correction to the wave velocity 

applies equally to all wavenumbers and is not associated with dispersion. In 
contrast, unless a is zero, C, does depend upon k and there is dispersion at second 
order in E .  As a consequence of this delayed appearance of dispersion, the follow- 
ing calculations for nonlinear Kelvin waves have to be carried through a large 
number of steps before a balance between the effects of nonlinearity and dis- 
persion becomes possible. Of course this also reduces the necessary scale of the 
nonlinearity and makes nonlinear effects correspondingly important along real 
coastlines. 

2.2. Equations of motion 
The results concerning linear Kelvin waves enable us to select an effective means 
of studying nonlinear Kelvin waves. For example, we shall measure the shape of 
waves from stretched axes whose origin is moving with the non-dispersive 
velocity 1 - ea, i.e. Y = (( 1 - ea)t + EY sgnf), 

and we measure the development due to nonlinearity and dispersion on the slow 
time scale 

where y and t are non-dimensionalized with respect to L and I f  I respectively. 
Two major changes in the calculations from the linear case are that explicit 
solutions need to be found in the outer region beyond the continental shelf and 
that we shall use the matching principle for asymptotic expansions instead of 
boundary conditions at a particular line (Van Dyke 1964). 

If the effects of nonlinearity and dispersion are of the same order in E ,  then the 
vertically averaged momentum and continuity equations for the inner region 
take the form 

T = E 2 t ,  

(2.2) 

7, - EV + E2Uy - €3CLUp + €4[Ur + uu, + wuy] = 0, 
7 y  + wy + E(U - m y )  + E2[VI? + uw, + wvy] = 0, 

(hu), + W y  + TI7 -sa7, + E2[TT + (714, + ( T 4 y l  = 0, 
hu = 0 at x =  0. 

The dimensional wave height and horizontal velocities are 
- 

= &fy, u = e3u(gH)h sgnf, v = e%(gN)h sgii f. 
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For the outer region, we replace the inner co-ordinate x by the stretched 
co -ordinate x = E X .  

The non-dimensional outer equations then take the form 

(2.3) 

Cx- v+Euy-E2CL.Uy+€3[UT+ V U y ] + € ~ U U x  = 0, 
Cy + vy + €( u - .Vy) + E 2 [ G T  + VVy] + €3UVX = 0, 

VY + CY + .(Ux - C4-Y) + E2[CT + (CV,l+ E 3 ( C W X  = 0, 
C,U,V-+O as X-tm,  

where the symbols 5, U ,  V have been used to distinguish the outer variables from 
their inner counterparts y, u, v respectively. 

It is clear that for small 8 the dependent variables once again have expansions 
of the form 

= rl,+sy,+ ..., 
where the yj are all independent of 8. 

2.3. Matched asymptotic expansions 

The coefficients of €0 in (2.2) yield the leading inner problem 

rlOz = 0, you +voy = 0, (hu,),+ (hv,) + q,, = 0, hu, = 0 at x = 0, 

which has the simple solution 
1 "  

yo = A,, u, = - A o y z ~ o ( l - h ) d x ' ,  vo = -Ao,  (2.4) 

where A ,  is an undetermined function of Y and T, and a steady current con- 
tribution to vo has been suppressed on the hypothesis that the waves are of finite 
extent. 

The coefficients of so in (2.3) yield the leading outer equations 

Cox-% = 0, Co;op+%y = 0, V , ~ + C o ~  = 0, Co,V,-+O as x + m ,  

whose solution is C, = B,e-X, V, = -B,e-X,  (2.5) 

where B, is an undetermined function of Y and T. At this stage it is extremely 
simple to apply the asymptotic matching principle to the one-term inner and 
one-term outer solutions (2.4) and (2.5), and we deduce that 

B, = A,. 

The coefficients of E in (2.2) yield the problem 

r l l y  + vly = A 1 - h)dd - a] , I  
OY h 
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The solutions are 
r 1 =  A1-XA0, 

(I-h)dx‘+A,, 

v, = - A ,  + A ,  (x - a +;I:( 1 - h)  dxr ]  , 

where A, is an undetermined function. In anticipation of the next matching, we 
now use (2.4) to show that the two-term outer expansion of the two-term inner 
solutions for and v are 

‘I N A,(1-X)+eA1, v N -A , ( I -X)-€A, .  

The coefficients of E in (2.3) yield the equations 

1 C1,-v, = - UOP, 
Cly + V,, = - U, - aA,, e-X, 
V,, + Clu = - Uox + aA,, e-,, 

f;,,V,,U,-+O as X - t m .  

We observe that the second and third of the above equations are consistent with 
each other only if 

U,, - U, = 2aA,, e-,, 

which, together with the conditions as X - t  m, implies that 

U, = -aA,ye-X. 

It now follows that the solutions for C, and V, are 

[, = B,e-X+A,,,Xe-X, 
V, = -B,e-X-A,,,Xe-X, 

where B, is an undetermined function of Y and T. 

term outer solutions for [ and V are 
From (2.5) and (2.6), we find that the two-term inner expansion of the two- 

g N Ao(1 -X)+eBl ,  V N -Ao( l  -X)-€B,, 

where, for covenience, the expansions have been re-expressed in outer variables. 
Applying the asymptotic matching principle to the two-term inner and outer 
solutions, we deduce that B, = A,. 

At the next order in e, the equations and solutions become exceedingly lengthy 
because of the new terms involving nonlinearity and dispersion. However, there 
is nothing different in principle from the previous equations, so we shall proceed 
directly to the matching procedure. The three-term outer expansions of the three- 
term inner solutions for 7 and v y  are 

7 - Ao(I - X +  ax2) +e(Al( i -  X )  + C X A ~ ~ ~ X } + ~ ~ { A ~ + / ~ A O  +pAoyu}, 

2), N - A*,(i - x + 4x2) - €{A,,(i - X )  + aA,,,,X) 

- “ 2 ~ ~ z u + ~ ~ + ~ ~ ~ o u + P ~ o , , , - ~ o , + a ~ ~ ~ ~ , ~ ~  
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where P and y are constants defined by 

The three-term inner expansions of the three-term outer solutions for 5 and V, are 

6 N A,( 1 - x- *X) + €{A1( 1 - X) + "A,,, X }  + "{B, - $(A;),Y}, 

v, N - A,,( 1 - x + 3x2) - €{AlY (1 - X) + "A,,,, X }  

- €2{B2Y - *(A:),, - 3"2A,,,,}, 
where, for convenience, the expansions have been re-expressed in outer variables. 
Applying the asymptotic matching principle to the three-term inner and outer 
solutions, we deduce that 

Bz = AZ+PA,+PAO,,Y +$(AE)YY 

and -AoT +yAop +*(A& + *"2A,,,, = 0. (2.7) 

The crucial point in the above analysis (which enables us to factor out the 
X variation) is that, although the three leading outer equations are not inde- 
pendent, they only involve the two variables & and V,. Had we taken the length 
scale of nonlinear Kelvin waves to be c*L,  which would make the velocity of 
linear waves equal to  1 - €(a + &a21c2) + . . . , then the three outer equations would 
not be independent, but would involve the three variables Q, U, and V,. The 
complete nonlinear analysis would then lead to the formidable problem 

where < is related to the dimensional wave height by the scaling el?. The com- 
plexity of (2.8) together with the large imposed wave height scale make this 
alternative theory most uninteresting. 

2.4. Wave development 

The evolution of nonlinear Kelvin waves is described by (2.7), which is a simple 
variant of the equation of Korteweg & de Vries (1895). Qualitatively, we can 
deduce that a smooth wave profile will steepen owing to the 'advection' term 
(*A;), whereas a jagged wave profile will become smoother owing to the 'dis- 
persion ' term &401TPY. From numerical solutions and as yet incomplete theoreti- 
cal work (Zabusky 1967; Gardner et al. 1967), it seems that a balance is quite 
rapidly achieved between advection and dispersion, and a sequence of solitary 
waves is formed. For (2.7), the solitary wave solutions are described by the 

A, = 6 a 2 ~ 2  sech2 ( K  Y - ~ [ y  + 2a2rc2]T), equation 

where K is an arbitrary constant. 
For a single solitary wave propagating along a straight coastline there is a 

simple relationship between the maximum wave height at the shoreline and the 
25 F L M  52 
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total wave energy. If we assume that along a real coastline a single solitary wave 
remains a single solitary wave then from the conservation of energy we obtain 

Unfortunately this simple derivation is not valid, since the number and sizes of 
the distinct solitary waves will vary along the coastline as the parameters change 
in value. A more rigorous analysis would merely demonstrate the absence of any 
general rule since, according to a result of Gardner et al. (1967), the size of the 
largest solitary wave which develops along a straight section of coastline equals 
the largest eigenvalue of a Schrodinger equation involving a as a scaling para- 
meter and the initial wave shape as the potential; an additional complication is 
that the initial wave shape will necessarily depend on the properties of previous 
sections of coastline. 

Although the Korteweg-de Vries equation may accurately describe the 
development of long waves, the non-physical properties which it attributes to 
short waves can have undesirable consequences (Benjamin, Bona & Mahony 
1972). In  contrast, an equation of Peregrine (1966) has ideal properties for both 
numerical and analytic studies yet describes the development of long waves to 
the same order of accuracy as the Korteweg-de Vries equation. I n  the moving 
stretched co-ordinates the appropriate modified version of (2.7) is 

a a 
( 1 - €a) - + €2 -4 A,,, = 0. [ ay aT - A,, + yA,,  + &(A;),  + 

Munk, Snodgrass & Wimbush (1970) have shown that between one and two 
thirds of the tidal amplitude on the California coastline can be attributed to 
Kelvin waves. Thus it is important to know when a linear theory can accurately 
describe such periodic Kelvin waves. For waves of frequency w the ratio of non- 
linear to dispersive terms in (2.7) is given by 

- 7:  da2L2/g. 

For semi-diurnal tides along a shelf of width 50 km this ratio is 
- r :a2m,  

and consequently a linear description of typical tides could be very inaccurate. 

3. Continental-shelf waves 
3.1. Linear continental-shelf waves 

In  non-dimensional form, linear continental-shelf waves of velocity c and wave- 
number k,  propagating along a coastline of the form shown in figure 1 satisfy 
the shallow-water wave equations 

I 0, 

(3.1) i = O  at  x = O ,  

h - - - ( 1 - h ) r + ~ { 1 + k ~ - € ~ k ~ ~ ~ ~ r  d r  1 = 0 at  x = b-. 
ax c 
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Since this is a linear problem, we can normalize the solutions in any convenient 
manner; here we choose 

] > @ ) 2 d x  = 1 .  

The crucial difference between these equations and the corresponding equations 
for Kelvin waves is that the dimensional velocity is given by C = - ec(gH)t sgn f. 

For small e we deduce that 7 and c have expansions of the form 

7 = ..., c = C 0 + € C l +  ...) 

where the qi and ci are all independent of E .  The coefficients of eo in (3.1) yield the 
Sturm-Liouville eigenvalue problem 

d 1 dh - h 2  +--7  - 0 ,  
dx(  %) codx O -  

= O  at x = O ,  

Thus 7o will equal one of the normalized eigenfunctions $(x), and co the corre- 
sponding eigenvalue. For most real depth profiles co will be positive in view of the 
identity 

co = 1; 2 #2dx + [(I - h)q%=b- + P4521z=0. 

The coefficients of e in (3.1) yield the problem 

h%--( l -h)Tl  1 = -$ ( l -h )$ - { l+k2}3$  C at x = b-. 

ax co CO 

These equations can only have a solution if the inhomogeneous terms are ortho- 
gonal to the zero-order solution $. This constraint reduces to 

c1 = - cop  + P}4$(b)2, 

which shows that for any realistic depth profile there is dispersion at  the first 
order in B .  Also, this expression for c1 indicates that Lls is indeed a natural length 
scale for long continental-shelf waves, since other scalings would in effect 
approximate (1 + k2}* by 1 + $k2 or Ikl, with a consequent loss of information. 

It should be noted that the assumed scalings in the above perturbation analysis 
are equivalent to the two physical assumptions (a )  that the horizontal diver- 
gence is small and ( b )  that the wavelength is large. Assumption (a) has been 
discussed by Longuet-Higgins (1968) and ( b )  concentrates attention upon one 
particular part of the complete spectrum described by Buchwald & Adams 

25-2 



388 R.  Smith 

(1968) for a particular geometry. The waves produced by the perturbation 
analysis are consistent with Hamon’s (1966) observations but not with those of 
Cartwright (1969). 

3.2. Equations of motion 

There are three features which make the analysis of nonlinear continental-shelf 
waves considerably easier than the corresponding analysis of nonlinear Kelvin 
waves. First, it is profitable to work with a single equation involving the wave 
height as the only scalar dependent variable. Second, we shall not use matched 
asymptotic expansions since the solutions are extremely insensitive t o  the line 
at which matching is performed and, as explained by Benjamin (1967) in a 
mathematically similar problem, the final equations governing the development 
of nonlinear dispersive waves can be extended in an obvious manner if the depth 
profiles are only asymptotically flat. Third, dispersion is involved a t  the first 
order in E .  

I f  the effects of nonlinearity and dispersion are of the same order in E ,  then the 
vertically averaged momentum and continuity equations for the outer region cam 
be combined into the scalar equation 

C = T  at X = O ,  
c + O  as X-tco. 

Here, X, Y and T are stretched co-ordinates defined by the equations 

X = E ( X - b ) ,  Y = e(c,t+ysgnf), T = s2t. 

The corresponding inner equations are 

(3.3) 

a a  1 E a  
- h -7y + -hzvy + - - (hN(7))  + O ( E 2 )  = 0, ax( ax ) Go co ax 

h - -3Y+-rY+-N(r )+O(~2)  = 0 a t  x = 0, I 1 € 

[:x co co 

h - - g p - - ( l - h ) T p + E ( ~ ~ ( T ) - ~ ~ r )  a 1 h +0(e2) = o at x = b-, 

ax CO 

where N ( 7 )  denotes the combination of terms 

T T z  + T r z u  - T u  T,, - COTZY Tzz. 

In  these equations the dimensional wave height is assumed to be given by 
- 
9 = ~ 3 7 H .  

From (3.2) and (3.3) it  is clear that for small E the dependent variable has an 
expansion of the form 

7 = T0+€Er]l+ ..., 
where the T~ are independent of E .  
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3.3. Inner and outer solutions 

The coefficients of eo in (3.3) yield the equations 

from which it follows that qo is some multiple A,( Y ,  T )  of the eigenfunction #(x) 
corresponding to the eigenvalue co. 

The coefficients of so in (3.2) yield the problem 

f - - 1  Q = 0, 
ax2 ay2 a2 1 (E 

go =A,$@) at X = 0,  

c + O  as X+co, 

from which it follows that the Fourier transforms c,(k) and Ao(k) of co and A, are 
related by the equation 

go = exp ( - { I  + i ~ ) t ~ ) A , $ ( b ) .  

The Coefficients of €1 in (3.3) yield the inhomogeneous equations 

a l h 

CO 

where M is the pseudo-differential operator with symbol {l + k2)t, i.e. 

F"glY-; (1-h)r lY  = - -N(Ao$)+5w)~(Ao , )  at x = b- 

&(B) = { 1  +k2)4B. 

These equations can only have a solution if the inhomogeneous terms are ortho- 
gonal to the eigenfunction #(x). This constraint reduces to 

A,,+GA,A,, -co~(b)2aM(Ao)/aY = 0, 13.4) 

where 8 is a constant defined by the integral 

For depth profiles which are only asymptotically flat, (3.4) is still applicable 
provided that co, fi and 6 are defined for the interval (0, co) instead of the interval 
(0, b).  
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3.4. Wave development 

There is very little that can be said directly concerning the solutions of (3.4). 
However, for wave profiles which are dominated by small wavenumber compo- 
nents, the symbol of the operator M (that is, its Fourier transform (1 + k2}*) can 
be approximated by 1 + $k2; (3.4) is thereby approximated by the Korteweg-de 
Vries equation. Similarly, for waves profiles which are dominated by large 
wavenumber components, the symbol of M can be approximated by Ikl and 
(3.4) is approximated by the Benjamin-Davis equation (Benjamin 1967; Davis & 
Acrivos 1967). Both of the limiting equations have solitary wave solutions so it is 
natural to presume that (3.4) will have a solitary wave solution. Unfortunately I 
have been unable to derive a description of these solitary waves. 

Following Peregrine (1966) and Benjamin, Bona & Mahony (1972), we note 
that for both numerical and analytic studies it is desirable to replace (3.4) by the 
modified equation 

4. Discussion 
For both Kelvin and continental-shelf waves the balance between non-linear 

and dispersive effects takes place on a time scale of order ~-2f-l. During this time 
the waves will have moved a distance of order c 3 L  and E-~L,  respectively, for the 
two classes of waves. These distances are so great that we are forced t o  conclude 
that a nonlinear theory is only necessary if the coastline is a closed curve. For 
example, tides propagating in a sea which has a narrow shelf and is almost closed 
can be expected to have wave profiles which differ significantly from the profiles 
that would be predicted by a linear theory. Thus, although this paper may have 
demonstrated that a theory for nonlinear Kelvin and continental-shelf waves is 
both possible and desirable, the detailed results in this paper are not well suited 
for comparison with any real situation, owing to the neglect of curvature, changes 
in depth profile and changes in the Coriolis parameter. 

I am indebted to Professor V. T. Buchwald for many constructive comments on 
the first draft of this paper. 
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